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Research Objectives

Simulate the movement of injected CO2 in the 
Morrow B reservoir and the reaction of CO2 with 
Morrow B formation water and mineral matrix

Model Set-Up Highlights

Initial pressure distribution from reservoir history 
matching of Ampomah et al. (2016), ~32 MPa av-
erage

Uniform initial temperature of 75o C

Prescribed pressure and temperature boundary 
conditions along top and bottom grid boundaries

Prescribed CO2 injection in 9 wells in western 
Farnsworth Unit for time = 0 to 10 years

Initial formation water and mineralogic composition 
from Ahmmed et al. (2016), Munson (1989), and 
Gallagher (2014)
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pH = 7

Albite
Ankerite
Calite
Clinochlore
Illite
Kaolinite
Quartz
Siderite
Smectite

9.0
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TOUGHREACT Results
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Aqueous CO2 concentrations (mol/kg H2O) 

Immiscible CO2 fractions 
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Conclusions

CO2 injected into the Morrow B Sandstone mainly enters the 
aqueous phase and is advected westward

Principal reservoir minerals should dissolve

Mineral sequestration of CO2 should occur principally as do-
lomite
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i)  10 years
     red = max concentration (0.053)
     blue = 0.1 × max concentration

ii)  50 years
     red = max concentration (0.053)
     blue = 0.1 × max concentration

i)  10 years
     red = max fraction (0.19)
     blue = 0.1 × max fraction

ii)  30 years
     red = max fraction (0.023)
     blue = 0.1 × max fraction

pH 

i)  10 years
     red = 4.8 (minimum)
     blue = 7

ii)  50 years
     red = 6 (minimum)
     blue = 7

Albite

50 years

Clinochlore

50 years

Illite

50 years

Dolomite Total CO2 precipi-
tated as carbonate 
minerals (kg/m3)50 years 

red = max vol fraction (0.00175)
blue = vol fraction = 0.001 50 years 

red = max vol mass/vol (0.08)
blue = 0.1 × max mass/vol 

STOMP Results
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STOMP simulations predict negligible changes in albite, 
clinochlore, and illite up to 50 years
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TOUGHREACT simulations show that: 

STOMP simulations are more preliminary; compared to 
TOUGHREACT simulations they predict:

Higher aqueous and immiscible concentrations of CO2

Less dissolution of reservoir minerals

Mineral sequestration of CO2 principally by calcite, magne-
site and siderite


